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Abstract

Theoretical calculations (energies and chemical shifts) at the B3LYP/6-311++G(d,p) level confirm that the compounds described as
1,7-diaza[12]annulenium quaternary salts are in fact pyridinium quaternary salts.
� 2008 Elsevier Ltd. All rights reserved.
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Scheme 2. Menger et al. compounds.
In synthetic organic chemistry there is a general princi-
ple that must be always followed: when a new compound
is described, and if the structure is within the accepted par-
adigm few proofs are required; on the other hand, if the
structure is an improbable one, then the proofs should be
very convincing.1

Two authors recently reported a method to prepare the
until this time unknown 1,7-diaza[12]annulenium quater-
nary salts 1. Yamaguchi et al. in 2006 described the follow-
ing reaction (Scheme 1).2

The seven compounds were characterized by 1H and 13C
NMR as well as by their UV and oxidation potentials.

The following year, Shi et al. based on the previous
work prepared a series of surfactants with the same struc-
ture (Scheme 2).3 According to them, 1H NMR and 13C
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Scheme 1. Yamaguchi et al. procedure.
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NMR spectroscopy, high-resolution mass spectrometry
(HRMS), and elemental analysis left no doubt as to the
structures. They even carried out geometry optimizations
of several conformers of the N-methyl derivative
[B3LYP/6-311+G(2d,p)] confirming their minimum-energy
nature.

Both papers were in error, as Christl has shown
recently.4 Christl suspected the reaction conditions given
by Yamaguchi et al.2 because these were virtually the same
as those Zincke et al.5,6 utilized to prepare the N-substi-
tuted pyridinium chlorides 4 (R = aryl) directly from
NNR R
N
R

3 4 5

a, R = H; b, R = p-fluorophenyl

Scheme 3. Compounds 3–5.
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Scheme 5. The predicted chemical shifts for 1,7-diaza[12]annulenium
quaternary salt 1b.
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dinitrophenylpyridinium salts and primary amines (for
instance, anilines) more than one hundred years ago. The
reaction has become the method of choice to prepare
N-arylpyridinium chlorides (Scheme 3).7–9

The controversy is now definitively settled,4 and the
authors2,3 have withdrawn their papers recognizing that
the compounds they claimed are actually the well-known
pyridinium salts 4. However, Christl wrote ‘only for one
alleged 3 (3c, R = 4-FC6H4), are there two deviations from
the values of the corresponding 40. These deviations con-
cern compound 3b versus 4b discussed, respectively, in
Refs. 2 and 10. Unfortunately the NMR data correspond-
ing to the Supplementary data of Ref. 2 is no longer avail-
able, having been withdrawn. Since we were part of the
controversy,10 we decided to examine this problem both
from an energetic and a NMR point of view.

First we carried out B3LYP/6-311++G(d,p) calcula-
tions11 using the GAUSSIAN 03 facilities12 on 3a and 4a as
model compounds. We have found two minima for com-
pound 3a using the reported most stable configurations
of [12]annulene 3.13 Compared to two molecules of 2a they
are 602.9 and 623.3 kJ mol�1 less stable. The second step
was to carry out GIAO calculations of absolute shieldings
r14 on the optimized geometries of 1b (two minima) and 2b.
Here again two molecules of 2b are more stable than
minimum 1 of 1b (570.0 kJ mol�1) and minimum 2 of 1b

(586.0 kJ mol�1).
The GIAO r values calculated for 2b are very well

correlated with the corresponding experimental values
(Scheme 4).14

d1H ðppmÞ ¼ ð33:3� 1:3Þ � ð1:04� 0:05Þ r1H ðppmÞ;
n ¼ 9 ðincluding TMSÞ; r2 ¼ 0:980 ð1Þ

d13C ðppmÞ ¼ ð174:2� 1:1Þ � ð0:94� 0:02Þ r13C ðppmÞ;
n ¼ 12ðincluding TMSÞ; r2 ¼ 0:997 ð2Þ
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Scheme 4. Calculated absolute shieldings and experimental chemical shifts
(all in ppm).
Eq. 2 is better because 1H NMR chemical shifts are sen-
sitive to solvent effects. The 19F chemical shift (109.5 ppm)4

differs from the calculated r value (263.7 ppm) at
154.2 ppm, value almost identical to the reference CFCl3
(d = 0.0, r = 153.7 ppm).

Then, using these equations and the calculated r of min-
imum 1 of 1b we have estimated its chemical shifts (Scheme
5).

Depending on the barrier to the automerization of
annulene 1b some signals would be averaged at room tem-
perature, but in any case they are very different from those
of 2b (experimental). The predictions for 1b could be used
to identify this compound in case it will be synthesized in
the future.
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